Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Microbes Infect ; 25(4): 105082, 2023 05.
Article in English | MEDLINE | ID: covidwho-2308846

ABSTRACT

Available COVID-19 vaccine only provide protection for a limited time due in part to the rapid emergence of viral variants with spike protein mutations, necessitating the generation of new vaccines to combat SARS-CoV-2. Two serologically distinct replication-defective chimpanzee-origin adenovirus (Ad) vectors (AdC) called AdC6 and AdC7 expressing early SARS-CoV-2 isolate spike (S) or nucleocapsid (N) proteins, the latter expressed as a fusion protein within herpes simplex virus glycoprotein D (gD), were tested individually or as a mixture in a hamster COVID-19 SARS-CoV-2 challenge model. The S protein expressing AdC (AdC-S) vectors induced antibodies including those with neutralizing activity that in part cross-reacted with viral variants. Hamsters vaccinated with the AdC-S vectors were protected against serious disease and showed accelerated recovery upon SARS-CoV-2 challenge. Protection was enhanced if AdC-S vectors were given together with the AdC vaccines that expressed the gD N fusion protein (AdC-gDN). In contrast hamsters that just received the AdC-gDN vaccines showed only marginal lessening of symptoms compared to control animals. These results indicate that immune response to the N protein that is less variable than the S protein may potentiate and prolong protection achieved by the currently used S protein based genetic COVID-19 vaccines.


Subject(s)
COVID-19 , Animals , Cricetinae , Humans , COVID-19/prevention & control , SARS-CoV-2/genetics , COVID-19 Vaccines/genetics , Pan troglodytes , Adenoviridae/genetics , Nucleocapsid , Immunization , Antibodies, Viral , Antibodies, Neutralizing
2.
Curr Trends Microbiol ; 15: 1-28, 2021.
Article in English | MEDLINE | ID: covidwho-1970504

ABSTRACT

SARS-CoV-2 vaccines aim to protect against COVID-19 through neutralizing antibodies against the viral spike protein. Mutations within the spike's receptor-binding domain may eventually reduce vaccine efficacy, necessitating periodic updates. Vaccine-induced immunity could be broadened by adding T cell-inducing antigens such as SARS-CoV-2's nucleoprotein (N). Here we describe two replication-defective chimpanzee adenovirus (AdC) vectors from different serotypes expressing SARS-CoV-2 N either in its wild-type form or fused into herpes simplex virus glycoprotein D (gD), an inhibitor of an early T cell checkpoint. The vaccines induce potent and sustained CD8+ T cell responses that are broadened upon inclusion of gD. Depending on the vaccine regimen booster immunizations increase magnitude and breadth of T cell responses. Epitopes that are recognized by the vaccine-induced T cells are highly conserved among global SARS-CoV-2 isolates indicating that addition of N to COVID-19 vaccines may lessen the risk of loss of vaccine-induced protection due to variants.

3.
Antimicrob Agents Chemother ; 65(12): e0077221, 2021 11 17.
Article in English | MEDLINE | ID: covidwho-1522896

ABSTRACT

Antivirals are urgently needed to combat the global SARS-CoV-2/COVID-19 pandemic, supplement existing vaccine efforts, and target emerging SARS-CoV-2 variants of concern. Small molecules that interfere with binding of the viral spike receptor binding domain (RBD) to the host angiotensin-converting enzyme II (ACE2) receptor may be effective inhibitors of SARS-CoV-2 cell entry. Here, we screened 512 pure compounds derived from natural products using a high-throughput RBD/ACE2 binding assay and identified (-)-hopeaphenol, a resveratrol tetramer, in addition to vatalbinoside A and vaticanol B, as potent and selective inhibitors of RBD/ACE2 binding and viral entry. For example, (-)-hopeaphenol disrupted RBD/ACE2 binding with a 50% inhibitory concentration (IC50) of 0.11 µM, in contrast to an IC50 of 28.3 µM against the unrelated host ligand/receptor binding pair PD-1/PD-L1 (selectivity index, 257.3). When assessed against the USA-WA1/2020 variant, (-)-hopeaphenol also inhibited entry of a VSVΔG-GFP reporter pseudovirus expressing SARS-CoV-2 spike into ACE2-expressing Vero-E6 cells and in vitro replication of infectious virus in cytopathic effect and yield reduction assays (50% effective concentrations [EC50s], 10.2 to 23.4 µM) without cytotoxicity and approaching the activities of the control antiviral remdesivir (EC50s, 1.0 to 7.3 µM). Notably, (-)-hopeaphenol also inhibited two emerging variants of concern, B.1.1.7/Alpha and B.1.351/Beta in both viral and spike-containing pseudovirus assays with similar or improved activities over the USA-WA1/2020 variant. These results identify (-)-hopeaphenol and related stilbenoid analogues as potent and selective inhibitors of viral entry across multiple SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , Stilbenes , Humans , Pandemics , Phenols , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL